A MATHEMATICAL NOTE

Solution of a transcendental equation encountered in the theory of single slit diffraction

Nicholas Wheeler, Reed College Physics Department

April 1997

Introduction. Monochromatic light (wave number $k=2 \pi / \lambda$), when normally incident upon a single slit of width b, gives rise ${ }^{1}$ in the far zone (i.e., in the Fraunhofer approximation) to a diffraction pattern which can be described

$$
\begin{equation*}
I(x)=I_{0}\left(\frac{\sin x}{x}\right)^{2} \tag{1}
\end{equation*}
$$

where x is the dimensionless variable defined $x \equiv \frac{1}{2} k b \sin \theta .{ }^{2}$ The function

$$
\operatorname{sinc}(x) \equiv \frac{\sin x}{x}
$$

-sometimes called ${ }^{3}$ the "sampling function"- is encountered also in many other physical contexts, and participates in a rich population of relations with the other "special functions" of higher analysis. From ${ }^{4}$

$$
\begin{aligned}
& \frac{\sin a x}{x}=\int_{0}^{\infty} f(y) \cos x y d y \\
& \quad f(y) \equiv \begin{cases}1 & 0<y<a \\
0 & a<y\end{cases}
\end{aligned}
$$

${ }^{1}$ For discussion of the physical details see, for example, $\S 10.2 .1$ of E. Hecht \& A. Zajac, Optics (1979).
${ }^{2}$ Here θ is the angular address of the pattern point in question, defined in the natural way; see Hecht \& Zajac's Fig. 10.10. For some purposes it is useful to re-scale the variable x, writing $x=\pi \xi$, which ranges on $\{0, \pi, 2 \pi, \ldots\}$ as ξ ranges on $\{0,1,2, \ldots\}$.
${ }^{3}$ See p. 306 of Spanier \& Oldham, who adopt the alternative definition

$$
\operatorname{Sinc}(\xi) \equiv \frac{\sin \pi \xi}{\pi \xi}
$$

${ }^{4}$ See A. Erdélyi et al, Tables of Integral Transforms I, p. 7.
we learn, for example, that
$\operatorname{sinc}(x)=$ Fourier cosine transform of the step function of unit width
while

$$
\operatorname{Si}(x) \equiv \int_{0}^{x} \operatorname{sinc}(\mathrm{t}) \mathrm{dt}
$$

serves to define the so-called "sine-integral." ${ }^{5}$ The form of the function $\operatorname{Sinc}(\xi)$ is indicated in the first of the following figures:

Figure 1: The function $\operatorname{Sinc}(\xi)$, as plotted by Mathematica.
The central peak of $s(x ; a) \equiv a \operatorname{sinc}(a x)$ becomes simultaneously taller and narrower as a increases, but

$$
\int_{-\infty}^{+\infty} s(x ; a) d x=\int_{-\infty}^{+\infty} \frac{\sin (a x)}{x} d x=\pi \quad: \quad \text { all positive } a
$$

One is led thus to the often useful ${ }^{6}$ "sinc representation of the delta function"

$$
\delta\left(x-x_{0}\right)=\lim _{a \rightarrow \infty} \frac{\sin \left[a\left(x-x_{0}\right)\right]}{\left(x-x_{0}\right)}
$$

${ }^{5}$ See W. Magnus \& F. Oberhettinger, Formulas and Theorems for the Functions of Mathematical Physics (1954), p. 97; Chapter 5 of M. Abramowitz \& I. Stegun, Handbook of Mathematical Functions (1964). It is interesting to note that $\operatorname{Si}(x)$ and its immediate cognates are the functions which H. Jahnke \& F. Emde, in Tables of Functions (1945), take as their point of departure.
${ }^{6}$ See, for example, p. 215 of D. Bohm's Quantum Theory (1951) or $\S 3$ in Chapter I of S. Chandrasekhar, "Stochastic Problems in Physics \& Astronomy," Rev. Mod. Phys. 15, 1 (1943).

From (1) we acquire physical interest in the function $f(x) \equiv \operatorname{sinc}^{2}(x)$, which is plotted in Figure 2:

Figure 2: The function $\operatorname{Sinc}^{2}(\xi)$, which is familiar to physicists as the (normalized) single slit diffraction pattern.

We have particular interest in the points at which $\operatorname{sinc}^{2}(x)$ assumes its extremal values. From

$$
\begin{aligned}
f^{\prime}(x)=\frac{d}{d x} \operatorname{sinc}^{2}(x) & =2 \operatorname{sinc}(x) \cdot \frac{x \cos x-\sin x}{x^{2}} \\
& =2 \cdot \frac{1}{x^{3}} \cdot \sin x \cdot(x \cos x-\sin x)
\end{aligned}
$$

we infer that

- $f(x)$ becomes flat as $x \longrightarrow \pm \infty$
- $f(x)$ is minimal at the zeros $\{ \pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots\}$ of $\sin x$
- $f(x)$ is maximal at $x=0$ and at the roots $\left\{ \pm x_{1}, \pm x_{2}, \pm x_{3}, \ldots\right\}$ of the transcendental equation

$$
\begin{equation*}
x=\tan x \tag{2}
\end{equation*}
$$

and it is with the description of those roots that we are mainly concerned.

1. Numerical location of the roots and Bonfim's construction. Let the location of the $n^{\text {th }}$ root of (2) be notated

$$
x_{n}=\pi \xi_{n}
$$

Mathematica supplies the following information:

$$
\begin{aligned}
& \xi_{1}=1.4302967=\left(1+\frac{1}{2}\right)-q_{1} \quad \text { with } \quad q_{1}=0.0697033 \\
& \xi_{2}=2.4590240=\left(2+\frac{1}{2}\right)-q_{2} \quad \text { with } q_{2}=0.0409760 \\
& \xi_{3}=3.4708897=\left(3+\frac{1}{2}\right)-q_{3} \quad \text { with } \quad q_{3}=0.0291103 \\
& \xi_{4}=4.4774086=\left(4+\frac{1}{2}\right)-q_{4} \quad \text { with } q_{4}=0.0225914 \\
& \xi_{5}=5.4815367=\left(5+\frac{1}{2}\right)-q_{5} \quad \text { with } \quad q_{5}=0.0184633 \\
& \xi_{6}=6.4843871=\left(6+\frac{1}{2}\right)-q_{6} \quad \text { with } \quad q_{6}=0.0156129 \\
& \xi_{7}=7.4864742=\left(7+\frac{1}{2}\right)-q_{7} \quad \text { with } \quad q_{7}=0.0135258 \\
& \xi_{8}=8.4880687=\left(8+\frac{1}{2}\right)-q_{8} \quad \text { with } \quad q_{8}=0.0119313 \\
& \xi_{9}=9.4893266=\left(9+\frac{1}{2}\right)-q_{9} \quad \text { with } \quad q_{9}=0.0106734 \\
& \xi_{10}=10.4903444=\left(10+\frac{1}{2}\right)-q_{10} \quad \text { with } \quad q_{10}=0.0096556 \\
& \xi_{20}=20.4950567=\left(20+\frac{1}{2}\right)-q_{20} \quad \text { with } \quad q_{20}=0.0049433 \\
& \xi_{30}=30.4966778=\left(30+\frac{1}{2}\right)-q_{30} \quad \text { with } \quad q_{30}=0.0033222 \\
& \xi_{40}=40.4974981=\left(40+\frac{1}{2}\right)-q_{40} \quad \text { with } \quad q_{40}=0.0025019 \\
& \xi_{50}=50.4979936=\left(50+\frac{1}{2}\right)-q_{50} \quad \text { with } \quad q_{50}=0.0020064 \\
& \xi_{100}=100.4989918=\left(100+\frac{1}{2}\right)-q_{100} \quad \text { with } \quad q_{100}=0.0010082 \\
& \xi_{200}=200.4994947=\left(200+\frac{1}{2}\right)-q_{200} \quad \text { with } \quad q_{200}=0.0005053
\end{aligned}
$$

The representation

$$
\begin{aligned}
x_{n}=\pi \xi_{n} \quad \text { with } \quad \xi_{n}=\left(n+\frac{1}{2}\right)-q_{n} & \\
& q_{n} \downarrow 0 \quad \text { as } \quad n \uparrow \infty
\end{aligned}
$$

was inspired by (see Figure 3) the graphical solution of (2).
Oz Bonfim has noticed ${ }^{7}$ that the points $\left(n, 1 / q_{n}\right)$ fall very nearly on a straight line (see Figure 4), which (if we take the first ten of those points as our data points) can in least squares approximation be described

$$
y \equiv \frac{1}{q}=4.585419+9.904152 n
$$

The implication is that

$$
\begin{array}{rlr}
\xi_{n} & \approx\left(n+\frac{1}{2}\right)-\frac{1}{4.585419+9.904152 n} & \tag{3}\\
& \approx\left(n+\frac{1}{2}\right)-\frac{1}{\sqrt{21}+10 n} & \text { BONFIM'S FORMULA }
\end{array}
$$

[^0]

Figure 3: Superimposed graphs of $y=\pi \xi$ and $y=\tan \pi \xi$. The graphs intersect at points ξ_{n} that stand just to the left of (and ever closer to) the points $\xi=n+\frac{1}{2}$ at which $\tan \pi \xi$ becomes singular.

Figure 4: The first ten of the points $\left(n, 1 / r_{n}\right)$ and the line

$$
y=4.585419+9.904152 n
$$

to which they give rise in least squares approximation.

Bonfim's formula gives 3-place accuracy (after round-off) already at $n=1$, and (3) does even better.
2. First steps toward a theoretical account of Bonfim's construction. My main objective in subsequent pages will be to remove some of the mystery which attaches to Bonfim's striking result-to clarify its analytical origins, and to indicate how it might, in principle, be refined. I begin with some elementary observations intended to sharpen our understanding of the analytical problem which Bonfim's formula presents.

With $x_{n}=\pi\left[\left(n+\frac{1}{2}\right)-q_{n}\right]$ in mind, let us suppose for the moment that x has been resolved $x=R-r$. Then (2) reads

$$
\begin{aligned}
R-r & =\tan (R-r) \\
& =\frac{\tan R-\tan r}{1+\tan R \tan r} \\
& =\frac{1-\frac{\tan r}{\tan R}}{\frac{1}{\tan R}+\tan r} \longrightarrow-\frac{1}{\tan r} \quad \text { as } \quad \tan R \uparrow \infty
\end{aligned}
$$

The implication (if we set $R \mapsto R_{n} \equiv \pi\left(n+\frac{1}{2}\right.$) and $r \mapsto r_{n} \equiv \pi q_{n}$) is that (2) can be written

$$
r=R-\frac{1}{\tan r}
$$

which on the assumption that r is small $\left(\tan r=r+\frac{1}{3} r^{3}+\frac{2}{15} r^{5}+\cdots \approx r\right)$ becomes

$$
r+\frac{1}{r}=R
$$

or again

$$
r^{2}-R r+1=0
$$

This is a quadratic with the property that if r is a root then so also is r^{-1}; if one root is small then the other is large. We have interest in the small root

$$
\begin{aligned}
r & =\frac{1}{2}\left[R-\sqrt{R^{2}-4}\right] \\
& =\frac{1}{2} R\left[1-\sqrt{1-(2 / R)^{2}}\right] \\
& =\frac{1}{2} R\left[1-\left\{1-\frac{1}{2}(2 / R)^{2}+\cdots\right\}\right]=\frac{1}{R}+\cdots
\end{aligned}
$$

Thus are we led to write

$$
\begin{align*}
\xi_{n} & =\left(n+\frac{1}{2}\right)-q_{n} \quad \text { with } \quad q_{n}=\frac{1}{\pi} r_{n} \approx 1 /\left(\pi R_{n}\right) \\
& \approx\left(n+\frac{1}{2}\right)-\frac{1}{\pi^{2}\left(n+\frac{1}{2}\right)} \\
& \approx\left(n+\frac{1}{2}\right)-\frac{1}{4.934802+9.869604 n} \tag{4}
\end{align*}
$$

This equation does exhibit the qualitative features of Bonfim's formula, but is quantitatively much less accurate. ${ }^{8}$ We confront therefore a new question: Why is (4) less precise than (3)?

[^1]3. What the literature has to say. That our subject has in fact an ancient and honorable history came first to my attention upon perusal of $\S 34.7$ in Spanier \& Oldham. The equation discussed there reads
\[

$$
\begin{equation*}
x=b \tan x \quad: \quad-\infty<b<\infty \tag{5}
\end{equation*}
$$

\]

and gives back (2) in the special case $b=1$. Spanier \& Oldham observe that the positive roots $\left\{x_{1}(b), x_{2}(b), \ldots\right\}$ of (5) are joined by an additional root $x_{0}(b)$ if $b>1$, and assign "especial importance" to the case $b=1$, in which connection they remark that "the values of $x_{n} \equiv x_{n}(1)$ correspond to the zeros of the spherical Bessel functions of the first kind." The functions to which they allude are standardly defined

$$
j_{n}(x) \equiv \sqrt{\frac{\pi}{2 x}} J_{n+\frac{1}{2}}(x) \quad: \quad n=0, \pm 1, \pm 2, \ldots
$$

Evidently discussion of the zeros of $j_{n}(x)$ amounts, in effect, to discussion of the zeros of $J_{n+\frac{1}{2}}(x)$, and Mathematica, when asked to describe BesselJ [3/2, x] , returns the information that

$$
J_{\frac{3}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left[\frac{\sin x}{x}-\cos x\right]
$$

The problem posed by (2) is equivalent, therefore, to the problem of exhibiting the zeros of $J_{\frac{3}{2}}(x)$, and this is a particular instance of a problem that has been much studied. ${ }^{9}$ We are referred on p. 440 of Abramowitz \& Stegun to their equation 9.5 .12 p .371 , which under the title "McMahon's expansion ${ }^{10}$ for large zeros" asserts that the $n^{\text {th }}$ zero of $J_{\nu}(x)$ can (if $n \gg \nu$ and $\mu \equiv 4 \nu^{2}$) be described

$$
x_{n} \sim R-\frac{\mu-1}{8 R}-\frac{4(\mu-1)(7 \mu-31)}{3(8 R)^{3}}-\frac{32(\mu-1)\left(83 \mu^{2}-982 \mu+3779\right)}{15(8 R)^{5}}-\cdots
$$

In the case $\nu=\frac{3}{2}$ (which entails $\mu=9$) we therefore have

$$
x_{n} \sim R-\frac{1}{R}-\frac{2}{3 R^{3}}-\frac{13}{15 R^{5}}-\cdots \quad: \quad R=R_{n} \equiv\left(n+\frac{1}{2}\right) \pi
$$

which removes some of the mystery from the equation

$$
\begin{equation*}
x_{n}=R-\frac{1}{R}-\frac{2}{3 R^{3}}-\frac{13}{15 R^{5}}-\frac{146}{105 R^{7}}-\frac{781}{315 R^{9}} \cdots \tag{6}
\end{equation*}
$$

displayed on p. 325 of Spanier \& Oldham. Our own equation (4) can in present notation be written

$$
\begin{equation*}
x_{n}=R-\frac{1}{R} \tag{7}
\end{equation*}
$$

[^2]of which (6) represents obviously a major refinement. It is interesting to note also that Spanier \& Oldham attach no asymptotic proviso $n \gg \nu$ to their equation-for the good and sufficient reason that it works wonderfully well already at $n=1$:

	Exact	Bonfim	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
x_{1}	4.4934096	4.4969543	4.5001824	4.4938117	4.4934388
x_{2}	7.7252517	7.7261841	7.7266577	7.7252816	7.7252526
x_{3}	10.904122	10.904731	10.904629	10.904127	10.904122
x_{4}	14.066194	14.066700	14.066431	14.066195	14.066194
x_{5}	17.220755	17.221203	17.220885	17.220756	17.220755
x_{6}	20.371303	20.371708	20.371381	20.371303	20.371303
x_{7}	23.519452	23.519823	23.519504	23.519453	23.519452
x_{8}	26.666054	26.666395	26.666089	26.666054	26.666054
x_{9}	29.811599	29.811915	29.811624	29.811599	29.811599
x_{10}	32.956389	32.956684	32.956408	32.956389	32.956389

This data shows - contrary to my initial impression - that (7) - which in the table I call the $1^{\text {st }}$ approximation to (6)—actually surpasses the accuracy of Bonfim's formula for $n \geq 3 .{ }^{11}$ And that, remarkably, the $3^{\text {rd }}$ approximation to (6) achieves 5-place accuracy already at $n=1$, and 8-place accuracy for $n \geq 3$.

I have acquired an obligation to sketch the argument from which (6) proceeds. Asymptotically (i.e., for large values of x) one has ${ }^{12}$

$$
\begin{equation*}
J_{\nu}(x)=\sqrt{\frac{2}{\pi x}}\left[P(\nu ; x) \cos \left(x-\frac{\nu \pi}{2}-\frac{\pi}{4}\right)-Q(\nu ; x) \sin \left(x-\frac{\nu \pi}{2}-\frac{\pi}{4}\right)\right] \tag{8}
\end{equation*}
$$

${ }^{11}$ In my account of Bonfim's method I took the first ten data points and in least squares approximation was led to (3). Bonfim himself actually took the first fifteen data points, and obtained a formula

$$
\xi_{n} \approx\left(n+\frac{1}{2}\right)-\frac{1}{\sqrt{19}+10 n}
$$

which gives improved precision for small values of n :
Exact Bonfim

x_{1}	4.4934096	4.4935983
x_{2}	7.7252517	7.7250106
x_{3}	10.904122	10.904140
x_{4}	14.066194	14.066345
x_{5}	17.220755	17.220966

but becomes less accurate than my $1^{\text {st }}$ approximation at $n=5$.
12 See Spanier \& Oldham, p. 526.
where

$$
\begin{aligned}
& P(\nu ; x) \sim 1-\frac{\left(\frac{9}{4}-\nu^{2}\right)\left(\frac{1}{4}-\nu^{2}\right)}{2!(2 x)^{2}}+\frac{\left(\frac{49}{4}-\nu^{2}\right)\left(\frac{25}{4}-\nu^{2}\right)\left(\frac{9}{4}-\nu^{2}\right)\left(\frac{1}{4}-\nu^{2}\right)}{4!(2 x)^{4}}-\cdots \\
& Q(\nu ; x) \sim \quad-\frac{\left(\frac{1}{4}-\nu^{2}\right)}{1!(2 x)}+\frac{\left(\frac{25}{4}-\nu^{2}\right)\left(\frac{9}{4}-\nu^{2}\right)\left(\frac{1}{4}-\nu^{2}\right)}{3!(2 x)^{3}}-\cdots
\end{aligned}
$$

The \sim notation is intended to emphasize that the preceding statements hold only asymptotically, but when

$$
\nu=\frac{\text { odd integer }}{2}
$$

the series terminate, and the statements become exact. In the particular case $\nu=\frac{3}{2}$ the resulting simplifications are especially dramatic; we have

$$
\begin{aligned}
& P\left(\frac{3}{2} ; x\right)=1 \\
& Q\left(\frac{3}{2} ; x\right)=1 / x
\end{aligned}
$$

giving

$$
\begin{aligned}
J_{\frac{3}{2}}(x) & =\sqrt{\frac{2}{\pi x}}\left[\cos (x-\pi)-\frac{1}{x} \sin (x-\pi)\right] \\
& =\sqrt{\frac{2}{\pi x}}\left[\frac{\sin x}{x}-\cos x\right]
\end{aligned}
$$

which is precisely and exactly the result quoted previously. Central to Stokes' line of argument is the observation that (8)—which I shall abbreviate

$$
\sqrt{\frac{\pi x}{2}} J_{\nu}(x)=P \cos \xi-Q \sin \xi
$$

—admits of "polar representation" in this familiar sense: Write $P=A \cos \theta$ and $-Q=A \sin \theta$, which entail $A=\sqrt{P^{2}+Q^{2}}$ and $\tan \theta=-Q / P$. Then

$$
\begin{aligned}
& =A \cos (\xi-\theta) \\
& =0 \quad \text { when } \quad \xi-\theta=\left(n+\frac{1}{2}\right) \pi \quad: \quad n=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

In the case $\nu=\frac{3}{2}$ one has $\xi=x-\pi$ and $\tan \theta=-1 / x$; we infer that the positive roots zeros of $J_{\frac{3}{2}}(x)$ satisfy

$$
\begin{align*}
x & =\left(n+\frac{1}{2}\right) \pi-\arctan (1 / x) \quad: \quad n=1,2, \ldots \tag{9}\\
& =R-\left\{\frac{1}{x}-\frac{1}{3 x^{3}}+\frac{1}{5 x^{5}}-\cdots\right\}
\end{align*}
$$

Into this statement Stokes feeds the assumption that x_{n} can be described

$$
x=R+\frac{a}{R}+\frac{b}{R^{3}}+\frac{c}{R^{5}}+\cdots
$$

which entails

$$
\begin{aligned}
\frac{1}{x} & =\frac{1}{R}\left[1+\left(\frac{a}{R^{2}}+\frac{b}{R^{4}}+\cdots\right)\right]^{-1} \\
& =\frac{1}{R}\left[1-\left(\frac{a}{R^{2}}+\frac{b}{R^{4}}+\cdots\right)+\left(\frac{a}{R^{2}}+\cdots\right)^{2}-\cdots\right] \\
& =\frac{1}{R}-\frac{a}{R^{3}}+\frac{a^{2}-b}{R^{5}}+\cdots \\
\frac{1}{x^{3}} & =\frac{1}{R^{3}}\left[1+\left(\frac{a}{R^{2}}+\frac{b}{R^{4}}+\cdots\right)\right]^{-3} \\
& =\frac{1}{R^{3}}\left[1-3\left(\frac{a}{R^{2}}+\cdots\right)+\cdots\right] \\
& =\frac{1}{R^{3}}-\frac{3 a}{R^{5}}+\cdots \\
\frac{1}{x^{5}} & =\frac{1}{R^{5}}\left[1+\left(\frac{a}{R^{2}}+\frac{b}{R^{4}}+\cdots\right)\right]^{-5} \\
& =\frac{1}{R^{5}}+\cdots
\end{aligned}
$$

So we have

$$
\begin{aligned}
R+\frac{a}{R}+\frac{b}{R^{3}}+\frac{c}{R^{5}}+\cdots= & R- \\
& \left.+\frac{1}{R}-\frac{a}{R^{3}}+\frac{a^{2}-b}{R^{5}}+\cdots\right] \\
& \left.=R-\frac{1}{R}+\frac{1}{R^{3}}-\frac{3 a}{R^{5}}+\cdots\right]-\frac{1}{5}\left[\frac{1}{R^{5}}+\cdots\right]+\cdots \\
R^{3} & \frac{-a^{2}+b-a-\frac{1}{5}}{R^{5}}+\cdots
\end{aligned}
$$

and for consistency are obligated to set $a=-1$, therefore $b=-\frac{2}{3}$, therefore $c=-\frac{13}{15}$, therefore... Thus by elegant refinement of the argument that led us to (4) do we recover precisely (6).

Equation (2) can be written $x=\operatorname{Arctan}(x)=n \pi+\arctan x$ or again

$$
\begin{equation*}
x-n \pi=\arctan x \tag{10}
\end{equation*}
$$

which is plotted in Figure 5. Spanier \& Oldham observe - and the figure makes clear-that the graphical technique standardly used to locate fixed points of iterative processes

$$
x \mapsto f(x) \mapsto f(f(x)) \mapsto \cdots
$$

can by slight modification be used to construct x_{n}, and that (because the graph of $\arctan x$ is so flat) convergence is typically quite rapid. Since

$$
n \pi<x_{n}<\left(n+\frac{1}{2}\right) \pi
$$

Figure 5: Graphical representation of (10). The $n^{\text {th }}$ rising line constitutes a graph of $y=x-n \pi$; it has unit slope, intercepts the x-axis at $n \pi$ and intercepts the curve at the point x_{n}; i.e., at the $n^{\text {th }}$ root of (2).
it proves convenient in $0^{\text {th }}$ approximation to set $X_{0} \equiv x_{n}^{\text {seed }}=\left(n+\frac{1}{4}\right) \pi$ and then to proceed

$$
X_{1}=\arctan X_{0}+n \pi \mapsto X_{2}=\arctan X_{1}+n \pi \mapsto \cdots \mapsto X_{N} \approx x_{n}
$$

In the illustrative case $n=2$ we obtain

$$
\begin{aligned}
& X_{0}=7.0685835 \\
& X_{1}=7.7250569 \\
& X_{2}=7.7252486 \\
& X_{3}=7.7252517=\text { first } 8 \text { digits of } x_{2}^{\text {exact }}
\end{aligned}
$$

The efficient computational algorithm just described proceeds from (10), while Stokes' analytical argument proceeded from (9). The equivalence of those equations follows from the observation ${ }^{13}$ that

$$
\arctan \left(\frac{1}{x}\right)=-\arctan x+\frac{\pi}{2}
$$

4. Connections with other topics. The roots x_{n} of (2) enter not very mysteriously into the infinite product

$$
J_{\frac{3}{2}}(x)=\frac{(x / 2)^{\frac{3}{2}}}{\Gamma\left(\frac{5}{2}\right)}\left(1-\frac{x^{2}}{x_{1}^{2}}\right)\left(1-\frac{x^{2}}{x_{2}^{2}}\right)\left(1-\frac{x^{2}}{x_{3}^{2}}\right) \cdots
$$

[^3]More mysterious is the claim ${ }^{14}$ that

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{x_{n}^{2}}=\frac{1}{10} \\
& \sum_{n=1}^{\infty} \frac{1}{x_{n}^{4}}=\frac{1}{350} \\
& \sum_{n=1}^{\infty} \frac{1}{x_{n}^{6}}=\frac{1}{7875}
\end{aligned}
$$

$$
\vdots
$$

and that such sums occur in "certain problems." I cannot, at the moment, imagine such a problem, or how to prove such a result (but see below!). Spanier \& Oldham remark finally that the numbers x_{n} occur in connection with the so-called "Langevin function," which arises in connection with the theory of dielectrics ${ }^{15}$ and is defined

$$
\mathcal{L}(x) \equiv \operatorname{coth} x-\frac{1}{x}
$$

The connection they have in mind can be written

$$
\frac{1}{\mathcal{L}(x)}=\frac{3}{x}+2 x \sum_{n=1}^{\infty} \frac{1}{x^{2}+x_{n}^{2}}
$$

or again

$$
\sum_{n=1}^{\infty} \frac{1}{x^{2}+x_{n}^{2}}=\frac{1 / \mathcal{L}(x)-3 / x}{2 x}
$$

Mathematica, when asked to expand the expression on the right side of the preceding equation, responds

$$
=\frac{1}{10}-\frac{1}{350} x^{2}+\frac{1}{7875} x^{4}-\frac{37}{6063750} x^{6}+\frac{59}{197071875} x^{8}-\cdots
$$

This striking result establishes contact with-and at the same time serves to extend - the list of sum formulæ presented at the top of the page.

[^4]
[^0]: ${ }^{7}$ Private communication (April 1997). To avoid expository clutter I will take certain liberties in my account of the details of Bonfim's work.

[^1]: ${ }^{8}$ I will have occasion to amend this remark.

[^2]: ${ }^{9}$ See, for example, Chapter 4 in C. J. Tranter, Bessel Functions with Some Physical Applications (1968) or Chapter XV in G. N. Watson, Theory of Bessel Functions (1966).
 ${ }^{10}$ From Tranter's $\S 4.5$ I infer that Major McMahon's expansion is merely a refinement of a result original to Stokes.

[^3]: ${ }^{13}$ See Spanier \& Oldham, p. 336.

[^4]: ${ }^{14}$ Spanier \& Oldham, p. 325.
 15 See pp. 25-29 of R. Coelho, Physics of Dielectrics for the Engineer (1979).

