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Introduction. Monochromatic light (wave number k = 2π/λ), when normally
incident upon a single slit of width b, gives rise1 in the far zone (i.e., in the
Fraunhofer approximation) to a diffraction pattern which can be described

I(x) = I0

( sinx

x

)2

(1)

where x is the dimensionless variable defined x ≡ 1
2kb sin θ.2 The function

sinc (x) ≡ sinx

x

—sometimes called3 the “sampling function”— is encountered also in many
other physical contexts, and participates in a rich population of relations with
the other “special functions” of higher analysis. From4

sin ax

x
=

∫ ∞

0

f(y) cosxydy

f(y) ≡
{

1 0 < y < a
0 a < y

1 For discussion of the physical details see, for example, §10.2.1 of E. Hecht
& A. Zajac, Optics ().

2 Here θ is the angular address of the pattern point in question, defined in
the natural way; see Hecht & Zajac’s Fig. 10.10. For some purposes it is useful
to re-scale the variable x, writing x = πξ, which ranges on {0, π, 2π, . . .} as ξ
ranges on {0, 1, 2, . . .}.

3 See p. 306 of Spanier & Oldham, who adopt the alternative definition

Sinc (ξ) ≡ sinπξ

πξ

4 See A. Erdélyi et al , Tables of Integral Transforms I , p. 7.
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we learn, for example, that

sinc (x) = Fourier cosine transform of the step function of unit width

while
Si(x) ≡

∫ x

0

sinc(t) dt

serves to define the so-called “sine-integral.”5 The form of the function Sinc(ξ)
is indicated in the first of the following figures:
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Figure 1: The function Sinc(ξ), as plotted by Mathematica.

The central peak of s(x; a) ≡ a sinc(ax) becomes simultaneously taller and
narrower as a increases, but

∫ +∞

−∞
s(x; a) dx =

∫ +∞

−∞

sin(ax)
x

dx = π : all positive a

One is led thus to the often useful6 “sinc representation of the delta function”

δ(x− x0) = lim
a→∞

sin[a(x− x0)]
(x− x0)

5 See W. Magnus & F. Oberhettinger, Formulas and Theorems for the
Functions of Mathematical Physics (), p. 97; Chapter 5 of M. Abramowitz
& I. Stegun, Handbook of Mathematical Functions (). It is interesting to
note that Si(x) and its immediate cognates are the functions which H. Jahnke
& F. Emde, in Tables of Functions (), take as their point of departure.

6 See, for example, p. 215 of D. Bohm’s Quantum Theory () or §3 in
Chapter I of S. Chandrasekhar, “Stochastic Problems in Physics & Astronomy,”
Rev. Mod. Phys. 15, 1 (1943).
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From (1) we acquire physical interest in the function f(x) ≡ sinc2(x),
which is plotted in Figure 2:
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Figure 2: The function Sinc2(ξ), which is familiar to physicists as
the (normalized) single slit diffraction pattern.

We have particular interest in the points at which sinc2(x) assumes its extremal
values. From

f ′(x) =
d

dx
sinc2(x) = 2 sinc(x) · x cosx− sinx

x2

= 2 · 1
x3

· sinx · (x cosx− sinx)

we infer that
• f(x) becomes flat as x −→ ±∞
• f(x) is minimal at the zeros {±π,±2π,±3π, . . .} of sinx
• f(x) is maximal at x = 0 and at the roots {±x1,±x2,±x3, . . .} of the

transcendental equation

x = tanx (2)

and it is with the description of those roots that we are mainly concerned.
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1. Numerical location of the roots and Bonfim’s construction. Let the location
of the nth root of (2) be notated

xn = πξn

Mathematica supplies the following information:

ξ1 = 1.4302967 = (1 + 1
2 ) − q1 with q1 = 0.0697033

ξ2 = 2.4590240 = (2 + 1
2 ) − q2 with q2 = 0.0409760

ξ3 = 3.4708897 = (3 + 1
2 ) − q3 with q3 = 0.0291103

ξ4 = 4.4774086 = (4 + 1
2 ) − q4 with q4 = 0.0225914

ξ5 = 5.4815367 = (5 + 1
2 ) − q5 with q5 = 0.0184633

ξ6 = 6.4843871 = (6 + 1
2 ) − q6 with q6 = 0.0156129

ξ7 = 7.4864742 = (7 + 1
2 ) − q7 with q7 = 0.0135258

ξ8 = 8.4880687 = (8 + 1
2 ) − q8 with q8 = 0.0119313

ξ9 = 9.4893266 = (9 + 1
2 ) − q9 with q9 = 0.0106734

ξ10 = 10.4903444 = (10 + 1
2 ) − q10 with q10 = 0.0096556

ξ20 = 20.4950567 = (20 + 1
2 ) − q20 with q20 = 0.0049433

ξ30 = 30.4966778 = (30 + 1
2 ) − q30 with q30 = 0.0033222

ξ40 = 40.4974981 = (40 + 1
2 ) − q40 with q40 = 0.0025019

ξ50 = 50.4979936 = (50 + 1
2 ) − q50 with q50 = 0.0020064

ξ100 = 100.4989918 = (100 + 1
2 ) − q100 with q100 = 0.0010082

ξ200 = 200.4994947 = (200 + 1
2 ) − q200 with q200 = 0.0005053

The representation

xn = πξn with ξn = (n + 1
2 )−qn

qn ↓ 0 as n ↑ ∞

was inspired by (see Figure 3) the graphical solution of (2).

Oz Bonfim has noticed7 that the points (n, 1/qn) fall very nearly on a
straight line (see Figure 4), which (if we take the first ten of those points as our
data points) can in least squares approximation be described

y ≡ 1
q

= 4.585419 + 9.904152n

The implication is that

ξn ≈ (n + 1
2 ) − 1

4.585419 + 9.904152n
(3)

≈ (n + 1
2 ) − 1√

21 + 10n
bonfim’s formula

7 Private communication (April 1997). To avoid expository clutter I will
take certain liberties in my account of the details of Bonfim’s work.
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Figure 3: Superimposed graphs of y = πξ and y = tanπξ. The
graphs intersect at points ξn that stand just to the left of (and ever
closer to) the points ξ = n + 1

2 at which tanπξ becomes singular.
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Figure 4: The first ten of the points (n, 1/rn) and the line

y = 4.585419 + 9.904152n

to which they give rise in least squares approximation.

Bonfim’s formula gives 3-place accuracy (after round-off) already at n = 1, and
(3) does even better.
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2. First steps toward a theoretical account of Bonfim’s construction. My main
objective in subsequent pages will be to remove some of the mystery which
attaches to Bonfim’s striking result—to clarify its analytical origins, and to
indicate how it might, in principle, be refined. I begin with some elementary
observations intended to sharpen our understanding of the analytical problem
which Bonfim’s formula presents.

With xn = π[(n + 1
2 ) − qn] in mind, let us suppose for the moment that x

has been resolved x = R− r. Then (2) reads

R− r = tan(R− r)

=
tanR− tan r

1 + tanR tan r

=
1 − tan r

tan R
1

tan R + tan r
−→ − 1

tan r
as tanR ↑ ∞

The implication (if we set R �→ Rn ≡ π(n + 1
2 ) and r �→ rn ≡ πqn) is that (2)

can be written
r = R− 1

tan r

which on the assumption that r is small (tan r = r + 1
3r

3 + 2
15r

5 + · · · ≈ r)
becomes

r +
1
r

= R

or again
r2 −Rr + 1 = 0

This is a quadratic with the property that if r is a root then so also is r−1; if
one root is small then the other is large. We have interest in the small root

r = 1
2

[
R−

√
R2 − 4

]

= 1
2R

[
1 −

√
1 − (2/R)2

]

= 1
2R

[
1 −

{
1 − 1

2 (2/R)2 + · · ·
}]

=
1
R

+ · · ·

Thus are we led to write

ξn = (n + 1
2 ) − qn with qn = 1

π rn ≈ 1/(πRn)

≈ (n + 1
2 ) − 1

π2(n + 1
2 )

≈ (n + 1
2 ) − 1

4.934802 + 9.869604n
(4)

This equation does exhibit the qualitative features of Bonfim’s formula, but is
quantitatively much less accurate.8 We confront therefore a new question: Why
is (4) less precise than (3)?

8 I will have occasion to amend this remark.
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3. What the literature has to say. That our subject has in fact an ancient and
honorable history came first to my attention upon perusal of §34.7 in Spanier
& Oldham. The equation discussed there reads

x = b tanx : −∞ < b < ∞ (5)

and gives back (2) in the special case b = 1. Spanier & Oldham observe that the
positive roots {x1(b), x2(b), . . .} of (5) are joined by an additional root x0(b) if
b > 1, and assign “especial importance” to the case b = 1, in which connection
they remark that “the values of xn ≡ xn(1) correspond to the zeros of the
spherical Bessel functions of the first kind.” The functions to which they allude
are standardly defined

jn(x) ≡
√

π

2x
Jn+ 1

2
(x) : n = 0,±1,±2, . . .

Evidently discussion of the zeros of jn(x) amounts, in effect, to discussion of the
zeros of Jn+ 1

2
(x), and Mathematica, when asked to describe BesselJ[3/2,x],

returns the information that

J 3
2
(x) =

√
2
πx

[ sinx

x
− cosx

]

The problem posed by (2) is equivalent, therefore, to the problem of exhibiting
the zeros of J 3

2
(x), and this is a particular instance of a problem that has

been much studied.9 We are referred on p.440 of Abramowitz & Stegun to
their equation 9.5.12 p.371, which under the title “McMahon’s expansion10

for large zeros” asserts that the nth zero of Jν(x) can (if n � ν and µ ≡ 4ν2)
be described

xn ∼ R− µ− 1
8R

− 4(µ− 1)(7µ− 31)
3(8R)3

− 32(µ− 1)(83µ2 − 982µ + 3779)
15(8R)5

− · · ·

In the case ν = 3
2 (which entails µ = 9) we therefore have

xn ∼ R− 1
R

− 2
3R3

− 13
15R5

− · · · : R = Rn ≡ (n + 1
2 )π

which removes some of the mystery from the equation

xn = R− 1
R

− 2
3R3

− 13
15R5

− 146
105R7

− 781
315R9

· · · (6)

displayed on p.325 of Spanier & Oldham. Our own equation (4) can in present
notation be written

xn = R− 1
R

(7)

9 See, for example, Chapter 4 in C. J. Tranter, Bessel Functions with Some
Physical Applications () or Chapter XV in G. N. Watson, Theory of Bessel
Functions ().

10 From Tranter’s §4.5 I infer that Major McMahon’s expansion is merely a
refinement of a result original to Stokes.
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of which (6) represents obviously a major refinement. It is interesting to note
also that Spanier & Oldham attach no asymptotic proviso n � ν to their
equation—for the good and sufficient reason that it works wonderfully well
already at n = 1:

Exact Bonfim 1st 2nd 3rd

x1 4.4934096 4.4969543 4.5001824 4.4938117 4.4934388
x2 7.7252517 7.7261841 7.7266577 7.7252816 7.7252526
x3 10.904122 10.904731 10.904629 10.904127 10.904122
x4 14.066194 14.066700 14.066431 14.066195 14.066194
x5 17.220755 17.221203 17.220885 17.220756 17.220755
x6 20.371303 20.371708 20.371381 20.371303 20.371303
x7 23.519452 23.519823 23.519504 23.519453 23.519452
x8 26.666054 26.666395 26.666089 26.666054 26.666054
x9 29.811599 29.811915 29.811624 29.811599 29.811599
x10 32.956389 32.956684 32.956408 32.956389 32.956389

This data shows—contrary to my initial impression—that (7)—which in the
table I call the 1st approximation to (6)—actually surpasses the accuracy of
Bonfim’s formula for n ≥ 3.11 And that, remarkably, the 3rd approximation to
(6) achieves 5-place accuracy already at n = 1, and 8-place accuracy for n ≥ 3.

I have acquired an obligation to sketch the argument from which (6)
proceeds. Asymptotically (i.e., for large values of x) one has12

Jν(x) =

√
2
πx

[
P (ν;x) cos

(
x− νπ

2
− π

4

)
−Q(ν;x) sin

(
x− νπ

2
− π

4

)]
(8)

11 In my account of Bonfim’s method I took the first ten data points and in
least squares approximation was led to (3). Bonfim himself actually took the
first fifteen data points, and obtained a formula

ξn ≈ (n + 1
2 ) − 1√

19 + 10n

which gives improved precision for small values of n:

Exact Bonfim

x1 4.4934096 4.4935983
x2 7.7252517 7.7250106
x3 10.904122 10.904140
x4 14.066194 14.066345
x5 17.220755 17.220966

but becomes less accurate than my 1st approximation at n = 5.
12 See Spanier & Oldham, p.526.
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where

P (ν;x) ∼ 1 − ( 9
4 − ν2)( 1

4 − ν2)
2!(2x)2

+
( 49

4 − ν2)( 25
4 − ν2)( 9

4 − ν2)( 1
4 − ν2)

4!(2x)4
− · · ·

Q(ν;x) ∼ − ( 1
4 − ν2)
1!(2x)

+
( 25

4 − ν2)( 9
4 − ν2)( 1

4 − ν2)
3!(2x)3

− · · ·

The ∼ notation is intended to emphasize that the preceding statements hold
only asymptotically, but when

ν =
odd integer

2

the series terminate, and the statements become exact. In the particular case
ν = 3

2 the resulting simplifications are especially dramatic; we have

P ( 3
2 ;x) = 1

Q( 3
2 ;x) = 1/x

giving

J 3
2
(x) =

√
2
πx

[
cos(x− π) − 1

x
sin(x− π)

]

=

√
2
πx

[ sinx

x
− cosx

]

which is precisely and exactly the result quoted previously. Central to Stokes’
line of argument is the observation that (8)—which I shall abbreviate

√
πx

2
Jν(x) = P cos ξ −Q sin ξ

—admits of “polar representation” in this familiar sense: Write P = A cos θ
and −Q = A sin θ, which entail A =

√
P 2 + Q2 and tan θ = −Q/P . Then

= A cos(ξ − θ)
= 0 when ξ − θ = (n + 1

2 )π : n = 0,±1,±2, . . .

In the case ν = 3
2 one has ξ = x−π and tan θ = −1/x; we infer that the positive

roots zeros of J 3
2
(x) satisfy

x = (n + 1
2 )π − arctan(1/x) : n = 1, 2, . . . (9)

= R−
{

1
x
− 1

3x3
+

1
5x5

− · · ·
}

Into this statement Stokes feeds the assumption that xn can be described

x = R +
a

R
+

b

R3
+

c

R5
+ · · ·
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which entails

1
x

=
1
R

[
1 +

(
a

R2
+

b

R4
+ · · ·

)]−1

=
1
R

[
1 −

(
a

R2
+

b

R4
+ · · ·

)
+

(
a

R2
+ · · ·

)2

− · · ·
]

=
1
R

− a

R3
+

a2 − b

R5
+ · · ·

1
x3

=
1
R3

[
1 +

(
a

R2
+

b

R4
+ · · ·

)]−3

=
1
R3

[
1 − 3

(
a

R2
+ · · ·

)
+ · · ·

]

=
1
R3

− 3a
R5

+ · · ·

1
x5

=
1
R5

[
1 +

(
a

R2
+

b

R4
+ · · ·

)]−5

=
1
R5

+ · · ·
...

So we have

R +
a

R
+

b

R3
+

c

R5
+ · · · = R−

[
1
R

− a

R3
+

a2 − b

R5
+ · · ·

]

+
1
3

[
1
R3

− 3a
R5

+ · · ·
]
− 1

5

[
1
R5

+ · · ·
]

+ · · ·

= R− 1
R

+
a + 1

3

R3
+

−a2 + b− a− 1
5

R5
+ · · ·

and for consistency are obligated to set a = −1, therefore b = − 2
3 , therefore

c = − 13
15 , therefore. . . Thus by elegant refinement of the argument that led us

to (4) do we recover precisely (6).

Equation (2) can be written x = Arctan(x) = nπ + arctanx or again

x− nπ = arctanx (10)

which is plotted in Figure 5. Spanier & Oldham observe—and the figure makes
clear—that the graphical technique standardly used to locate fixed points of
iterative processes

x �→ f(x) �→ f(f(x)) �→ · · ·
can by slight modification be used to construct xn, and that (because the graph
of arctanx is so flat) convergence is typically quite rapid. Since

nπ < xn < (n + 1
2 )π
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Figure 5: Graphical representation of (10). The nth rising line
constitutes a graph of y = x − nπ; it has unit slope, intercepts the
x-axis at nπ and intercepts the curve at the point xn ; i.e., at the
nth root of (2).

it proves convenient in 0th approximation to set X0 ≡ xseed
n = (n + 1

4 )π and
then to proceed

X1 = arctanX0 + nπ �→ X2 = arctanX1 + nπ �→ · · · �→ XN ≈ xn

In the illustrative case n = 2 we obtain

X0 = 7.0685835
X1 = 7.7250569
X2 = 7.7252486
X3 = 7.7252517 = first 8 digits of xexact

2

The efficient computational algorithm just described proceeds from (10), while
Stokes’ analytical argument proceeded from (9). The equivalence of those
equations follows from the observation13 that

arctan
(

1
x

)
= − arctanx + π

2

4. Connections with other topics. The roots xn of (2) enter not very mysteriously
into the infinite product

J 3
2
(x) =

(x/2)
3
2

Γ ( 5
2 )

(
1 − x2

x2
1

)(
1 − x2

x2
2

)(
1 − x2

x2
3

)
· · ·

13 See Spanier & Oldham, p.336.
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More mysterious is the claim14 that

∞∑
n=1

1
x2

n

=
1
10

∞∑
n=1

1
x4

n

=
1

350
∞∑

n=1

1
x6

n

=
1

7875

...

and that such sums occur in “certain problems.” I cannot, at the moment,
imagine such a problem, or how to prove such a result (but see below!). Spanier
& Oldham remark finally that the numbers xn occur in connection with the
so-called “Langevin function,” which arises in connection with the theory of
dielectrics15 and is defined

L(x) ≡ cothx− 1
x

The connection they have in mind can be written

1
L(x)

=
3
x

+ 2x
∞∑

n=1

1
x2 + x2

n

or again

∞∑
n=1

1
x2 + x2

n

=
1/L(x) − 3/x

2x

Mathematica, when asked to expand the expression on the right side of the
preceding equation, responds

=
1
10

− 1
350

x2 +
1

7875
x4 − 37

6063750
x6 +

59
197071875

x8 − · · ·

This striking result establishes contact with—and at the same time serves to
extend—the list of sum formulæ presented at the top of the page.

14 Spanier & Oldham, p.325.
15 See pp.25–29 of R. Coelho, Physics of Dielectrics for the Engineer ().


